Ruminant Diet and Management Its role GHG Abatement

Joe Patton, Teagasc April 24 2020

Context... Evolution of the livestock sector 1980 to present

📕 Enteric Fermentation 📕 Manure Management 📕 Agricultural Soils 📕 Liming 📕 Urea Application

Figure 5.1 Total Emissions from Agriculture by Sector, 1990-2017

Context... Evolution of the livestock sector 1980 to present

Source: FAPRI-Ireland Model

MACC Agriculture 2021-2030

Figure 3.1: Marginal Abatement Cost Curve for agriculture for 2021-2030 (methane and nitrous oxide abatement). Values are based on linear uptake of measures between the years 2021-2030 and represent the mean yearly abatement over this period. Dashed line indicates Carbon cost of €50 per tonne CO₂.

Feed Energy Fractions and Ruminants

Methanogenesis: an embedded feature in rumen fermentation

Management factors can affect balance

- Forage fibre content
- Carb/N fractions
- Animal type/production level

Mediated through changes in rumen microbial population Additives??

Current Research– Feed Additives

Research Example: 3 NOP- Effect on CH4 Emissions

Table 1. Effect of 3-nitrooxypropanol (3NOP) on feed dry matter intake, lactation performance, and body weight change of Holstein dairy cows

	Treatment*					<i>P</i> value [†]		
ltem	Control	Low3NOP	Medium3NOP	High3NOP	SEM^{\ddagger}	C vs. Trt.	L	Q
Dry matter intake, kg/d	28.0	28.0	27.7	27.5	0.45	0.58	0.38	0.69
Milk yield, kg/d	46.1	46.4	45.9	43.6	1.21	0.59	0.21	0.19
ECM yield, kg/d [§]	44.9	45.2	46.2	43.9	1.59	0.91	0.84	0.44
Feed efficiency kg/kg ¹	1.64	1.65	1.67	1.62	0.033	0.94	0.80	0.41
Milk fat, %	4.08	3.98	4.02	4.25	0.123	0.98	0.43	0.15
Milk fat yield, kg/d	1.85	1.81	1.87	1.85	0.086	0.98	0.90	0.85
Milk true protein, %	3.06	3.14	3.12	3.13	0.033	0.07	0.14	0.31
Milk true protein yield, kg/d	1.37	1.46	1.45	1.33	0.042	0.42	0.75	0.02
Milk lactose, %	4.78	4.79	4.81	4.77	0.026	0.69	0.95	0.32
Milk lactose yield, kg/d	2.16	2.22	2.25	2.04	0.069	0.90	0.43	0.05
Body weight, kg	664	672	672	664	5.0	0.38	0.83	0.13
Body weight change, g/d [#]	210	353	451	330	71.2	0.05	0.09	0.16

Hristov et al, 2015

www.pnas.org/cgi/doi/10.1073/pnas.1515515112

Methane Feed Additives- Issues

- Verification of long-term effects
 - Rumen adaptation
- Inclusion rates and delivery in pasture systems
- Relative effects at different inclusions/animal types
- Cost and manufacturing scale
- Production and animal health effects
- Residues and toxicity
- Inventory

Research on Nitrous Oxide in Pasture Systems

- Multispecies swards for grazing dairy cows 2019-
- Ryegrass, timothy plus clovers, plantago, chicorium.
- Reduced fertilizer N- 100kg per ha
- Secondary compounds in plantain- aucubin
- Effect on urine patch N20 losses
- Plus animal productivity measures

(Finn et al, Teagasc, Johnstown Castle)

ture and Food Development Authority

Research on Nitrous Oxide- Emissions from Excreta on Pasture

FIGURE 1: Direct nitrous oxide emission factors for different excreta sources, over three seasons and applied to three different soils.

- Emission Factors for N20 lower than inventory default
- Site, weather and season effects
- Urinary losses in autumn on wet soils most significant
- Research on-going into mitigation of UrN

(Krol et al, Teagasc, Johnstown Castle)

Chemical Composition of Pasture

Stage of grazing v N Profile

			Protein N Fraction				
Season	Stage	Soluble	Insoluble	Indigestible			
Spring	2 Leaf	177.1	11.5	2.3			
	3 Leaf	129.3	15.5	2.7			
Summer	2 Leaf	133.4	26.1	3.1			
	3 Leaf	112.2	21.4	4.1			

Managing feed protein content in grass based systems

- Grazed too early: re-growth stage has higher soluble N fraction
- Grazed too late- fibre increased leading to higher CH4 potential
- Grazing management is key
- Nitrogen (PDIN) generally not limiting
- Supplement with Hi-ferm energy sources to achieve PDIE balance
- Conserved forage (silage protein) content too low- improve management
- Break the assumed link between 'crude protein' and quality

Summary and Conclusions

- Rumen methane production remains a key CO2 challenge
- High performance animals and diets reduce footprint per kg product
- Rumen-based mitigation to address absolute emission levels
- Much research done- limited by persistence of effects
- Newer technologies showing promise
- Nitrous oxide on pasture- evidence of variable emission factors due to soil, weather and N conditions
- Specific nutrients in pasture diets to shift fractions away from urinary N
- Extension effort required to improve pasture and conserved forage quality, plus shift thinking on crude protein in grass based diets

