The Signpost Series 'Pointing the way to a low emissions agriculture'

Protected Urea

Dr Patrick Forrestal & Dr David Wall

Teagasc, Crops, Environment and Land-Use Programme, Johnstown Castle, Co Wexford

Sources of N?

- Biological fixation from legumes
- Manure mineral and organic N
- Fertilisers
- Atmospheric deposition

Nutrients including N fertiliser: Where are the signs pointing over the next decade?

EuropeanThe Farm to Fork Strategyis at the heart of the European Green DealCommission

States the EU Commission's intention to:

"act to reduce nutrient losses by at least 50%" <u>Signals</u> "will reduce the use of fertilisers by at least a 20% by 2030" <u>Why?</u> Because, as outlined, nutrients not absorbed by plants are a

" major source of air, soil and water pollution and of climate impacts"

and

"It (fertiliser) has reduced biodiversity in rivers, lakes, wetlands and seas"

Why Protected Urea Now?

We need to show progress towards reduced emissions Protected urea is the largest single tool on the table

- Yield grows top yields
- Cost costs less than CAN
- Greenhouse Gas reduces emissions
- Ammonia holds onto N to grow grass
- We get credit for reduced emissions

Dr. Patrick Forrestal & Dr. David Wall Teagasc Signpost Series 22-05-2020

 $|\checkmark|$

 \checkmark

 $\mathbf{\nabla}$

 \mathbf{N}

 \checkmark

What is protected N/urea?

 Urea N fertiliser made safe from ammonia gas loss with a <u>urease</u> <u>inhibitor</u> on surface or in melt

Ammonia NH₃ Active Site Ammonium Urea н Hydrolysis H_2N NH_2 Urease Enzyme Urease inhibitor Schematic of the mode of action of easasc A urease inhibitor Credit: BASF Dr. Patrick Forrestal & Dr. David Wall Teagasc Signpost Series 22-05-2020 AGRICULTURE AND FOOD DEVELOPMENT AUTHORITY

Urease inhibitors

- Three urease inhibitors are registered under the EU fertiliser regulations
 - NBPT (from: Koch & others)
 - NBPT+NPPT (from: BASF)
 - 2-NPT (from: SKW)
- Department of Ag. will be carrying out surveillance to check that regulatory levels are met at the point of sale

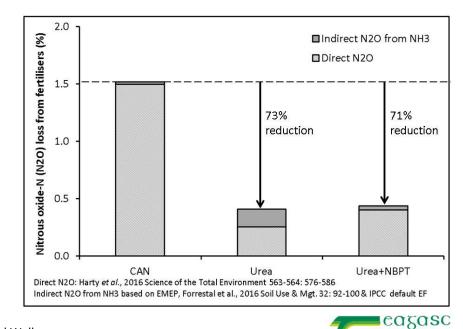
There ar fertil

Fe	+ sulphur				sulph		
Company	Product Name	Inhibitor Type & Name	N	P	K	S	
Grassland	IFI Topper N-Sure	NBPT + NPPT (LIMUS)	% 46	%	%	%	
Fertilisers	IFI Super Topper	NBPT + NPPT (LIMUS)	38	-	-	- 7	1
(Kilkenny)	N-Sure	$\mathbf{NDFI} + \mathbf{NFFI} (\mathbf{LIMOS})$	30			/	1
IFI	IFI Topper Boost	NBPT + NPPT (LIMUS)	29		14	3.8	J
	N-Sure	$\mathbf{MD}\mathbf{I} + \mathbf{M}\mathbf{I} + \mathbf{M}\mathbf{O}\mathbf{S}$	29	_	14	5.0	
Grassland	Eco Urea	NBPT + NPPT (LIMUS)	46	-	-	-	
Agro	Eco N 38	NBPT + NPPT (LIMUS)	38			7.6	2
	Eco 29-0-14 +S	NBPT + NPPT (LIMUS)	29	-	14	2	
	Alzon Neo-N	2-NPT + MPA	46	<u>u</u>	1 <u>121</u> 4		
	Alzon Neo-N + S	2-NPT + MPA	40	H	-	6	3
Goulding	Sustain / KaN	NBPT (Agrotain)	46	-		-0.0	
Fertiliser	Sustain / KaN	NBPT (Agrotain)	38	1 1	1000	7	4
	Sustain / KaN	NBPT (Agrotain)	29	-	14	3.5	
NitroFert	Nitro Guard	NBPT + NPPT (LIMUS)	46		(-)	-	
	Nitro Guard	NBPT + NPPT (LIMUS)	38	-	(- -)	7	5
	Nitro Guard	NBPT + NPPT (LIMUS)	30	-	15	2	_
Target	UreaMax	NBPT + NPPT (LIMUS)	46		-	_	
Fertilisers	UreaMax + S	NBPT + NPPT (LIMUS)	38	-	-	7	6
	29-0-14+4% S Max	NBPT + NPPT (LIMUS)	29	-	14	4	
Yara	Yara Vera AMIPLUS	NBPT (AMIPLUS)	46	<u>120</u>	3 <u>700</u> 8	- 4	eazasc

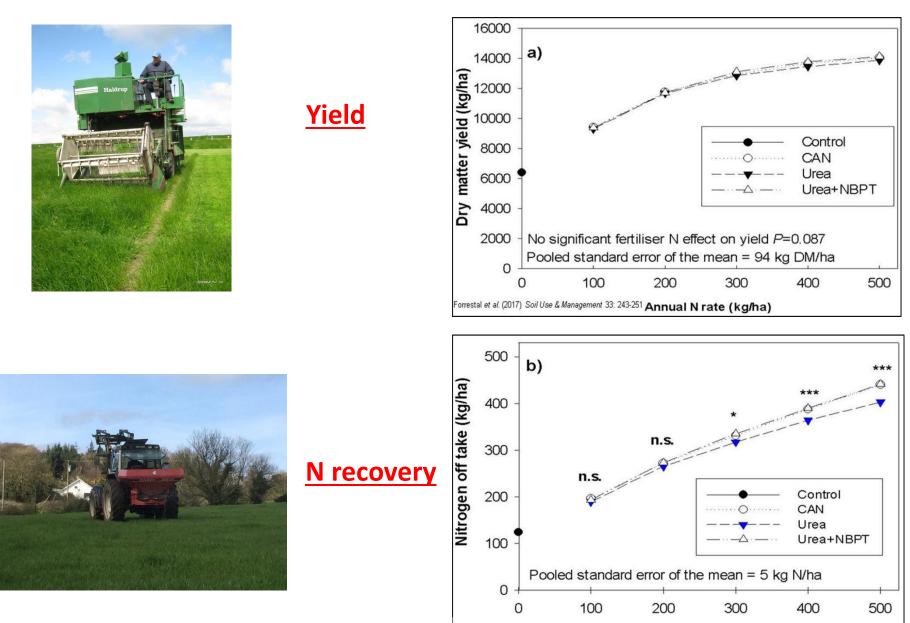
S trial at Teagasc, Johnstown Castle

Dr. Patrick Forrestal & Dr. David Wall Teagasc Signpost Series 22-05-2020

AGRICULTURE AND FOOD DEVELOPMENT AUTHORITY

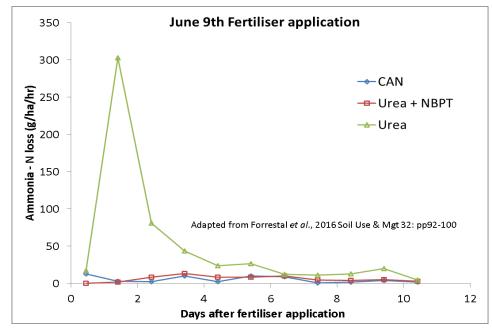

Teagasc urea + NBPT Research - Gases

25 Ammonia-N loss from fertilisers (%) ²
¹⁰
¹²
¹⁰
¹⁰ <u>Ammonia</u> 79% 85% reduction reduction 2.3% 15.5% 3.3% 0 CAN Urea+NBPT Urea Urea: EMEP/EEA emission inventory value used in Irish NH3 inventory CAN and Urea+NBPT: by applying NH3 abatement of Forrestal et al., 2016 Soil Use & Mgt. 32: 92-100



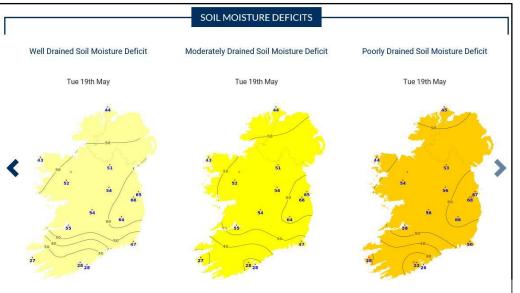
CULTURE AND FOOD DEVELOPMENT AUTHOR

Teagasc urea + NBPT Research – Grass Production



Forrestal et al. (2017) Soil Use & Management 33: 243-251

Annual N rate (kg/ha)


Dr. Patrick Forrestal & Dr. David Wall Teagasc Signpost Series 22-05-2020

Protection from Ammonia loss in dry summer weather

Will a urease inhibitor protect urea from loss in dry summer conditions?

Yes, this is what it is what protected urea products are designed to do

Soil Moisture Deficits (SMDs) are calculated for three classes of soil: well drained, moderately drained and poorly drained. For further information on how Soil Moisture Deficits are calculated, click here.

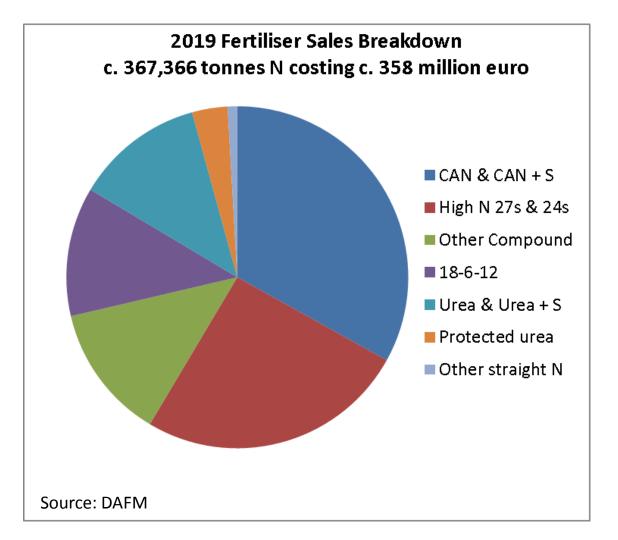
What happens to N response with High and climbing Soil Moisture Deficit?

Nitrogen is not a substitute for water (think 2018) growth response to protected urea and other N forms will be disappointing until Deficits decline, adding more N won't change this

Dr. Patrick Forrestal & Dr. David Wall Teagasc Signpost Series 22-05-2020

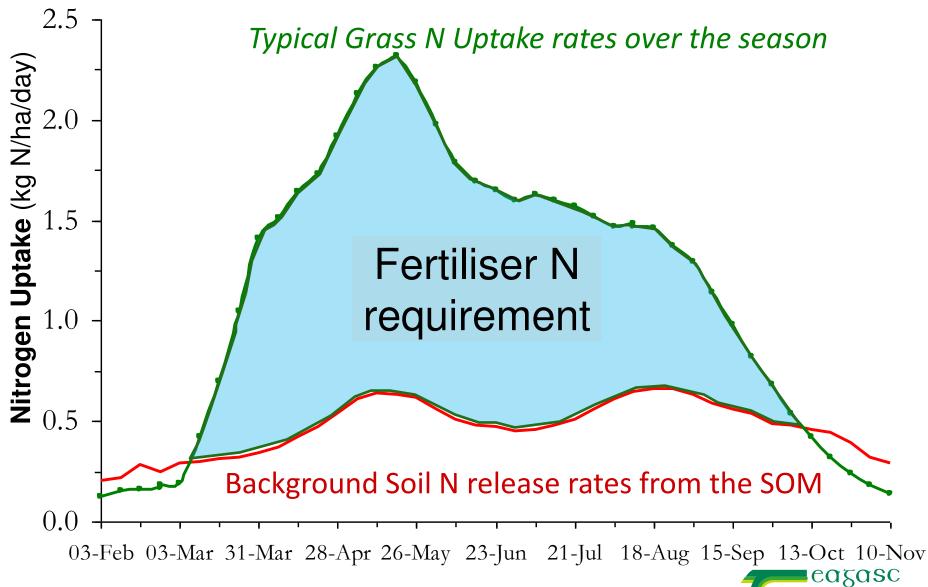
Will protected urea cost more?

Work it out per kg/unit of N not per tonne

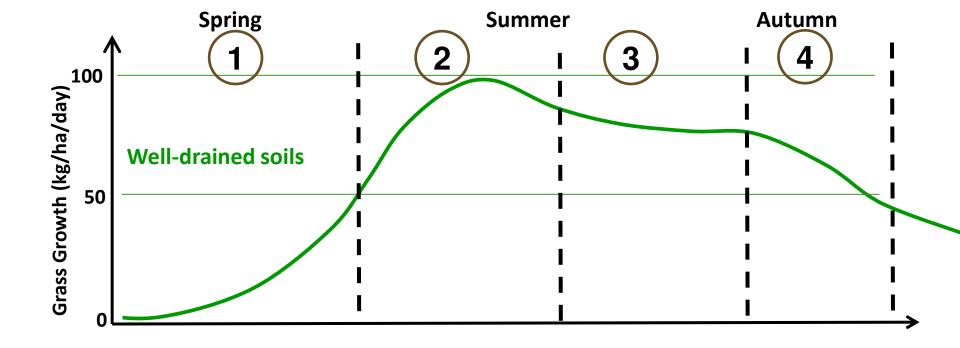

- E.g. Protected urea @ 385/t ÷ 460kgN/t = €0.84/kg N
- E.g. CAN @ 240/t ÷ 270kgN/t = €0.89/kg N

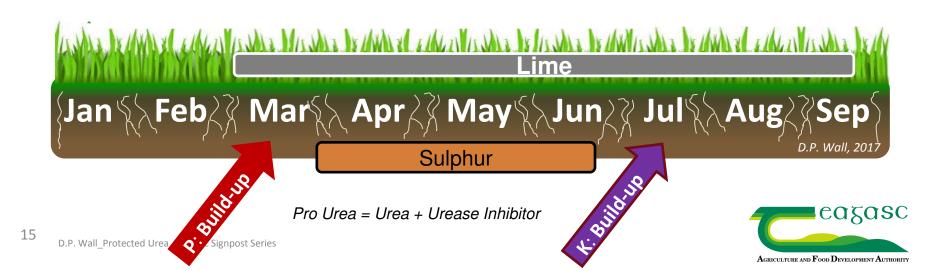
Fertiliser		CAN	Protected urea
Big bag	(kg)	500	375
Nitrogen	(%)	27	46
Big bag	(kg N)	135	172.5
At 30 kg N/ha covers	(ha)	4.5	5.7
At 24 units/ac covers	ac)	11.1	14.1

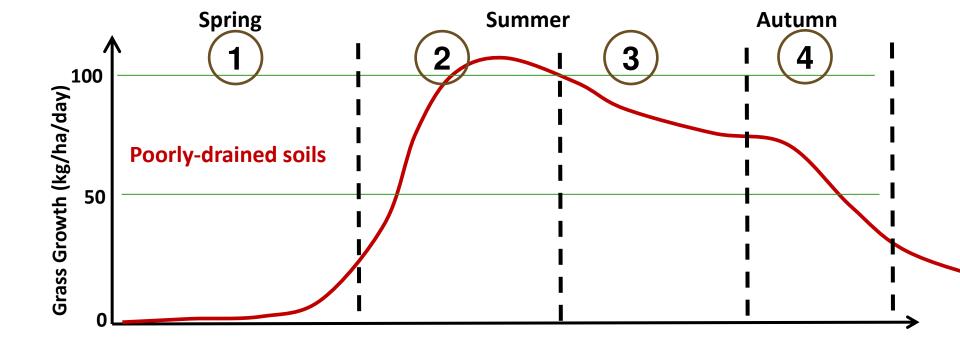
Dr. Patrick Forrestal & Dr. David Wall Teagasc Signpost Series 22-05-2020 If the Greenhouse Gas and Ammonia abatement from fertiliser identified by Teagasc is to be availed of substantial change in fertiliser selection will be need.

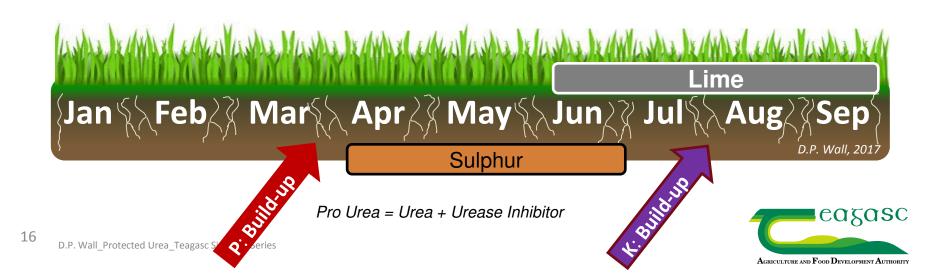

Nutrient advice ?

One soil does not fit all!






Fertiliser N Requirement by Grass Swards



AGRICULTURE AND FOOD DEVELOPMENT AUTHORITY

Protected Urea - Grazing Fertiliser Programmes

Example fertiliser programmes integrating protected urea during the growing season for dairy and drystock farms at different stocking rates and soil test levels

Da	airy	Table 1. Recommended rates of N, P & K (kg/ha) & fertiliser products (kg/ha).Farm stocked at 210kg Org N/ha or 2.5LU/ha.Soil P & K levels assumed to be index 1								
Advice		Feb	March	April	May	June / July	Sept			
	oduct g/ha)	55 kg/ha Pro-Urea	310 kg/ha 18-6-12+S	125 kg/ha Pro-Urea	310 kg/ha 18-6-12	60 kg/ha Pro-Urea	55 kg/ha Pro-Urea	Total kg/ha		
Ν	250	25	56	58	56	28	25	248		
Р	39		19		19			38		
K	95		37		37			72		
S	15		9		9			18		
Cos	t €/ha	21	115	48	115	23	21	€343ha		

 $Pro-Urea = Urea \ 46\% + NBPT \ / \ 2-NBPT, \ Cost/tonne = \ \epsilon 380/t, \ Pro-Urea + S \ (40\% \ N \ \& \ 6\% \ S) = \ \epsilon 380t/, \ 18-6-12 + \ 3\% \ S = \ \epsilon 370, \\ To \ convert \ units/ac \ to \ kg/ha \ multiply \ by \ 1.25. \ Apply \ 125kg/ha \ of \ MOP \ 50\% \ once \ every \ 4 \ years.$

Further information available on the Teagasc Website

https://www.teagasc.ie/crops/soil--soil-fertility/protected-urea/

Note: Complete a farm fertiliser plan to determine max. N &P allowances as per Nitrates Legislation

17

Summary: why Protected Urea Now?

We need to show progress towards reduced emissions Protected urea is the largest single tool on the table

- Yield grows top yields
- Cost costs less than CAN
- Greenhouse Gas reduces emissions
- Ammonia holds onto N to grow grass
- We get credit for reduced emissions

Dr. Patrick Forrestal & Dr. David Wall Teagasc Signpost Series 22-05-2020

|

 $\mathbf{\Lambda}$

 $\mathbf{\nabla}$

 \mathbf{N}

 $\mathbf{\Lambda}$