Managing Cattle Slurry Efficiently

Mark Plunkett,

Teagasc,

Johnstown Castle

Utilising Major Cattle Slurry Nutrients

Organic fertilisers generated on farms can effectively replace a proportion of chemical fertilisers

Fertiliser Replacement Values

Available Nutrient Values		nt Values	Factors to Consider		
Nutrient	kg/m³	units/ 1,000gals	 ✓ Slurry dilution with water? ✓ Slurry DM^{\$} - 10 fold variation 		
Ν	1.0	9	✓ Testing slurry nutrient levels		
Ρ	0.5	5			
К	3.5	32	N-P-K ???		
DM%	6.3	6.3	Vivite State		

^{\$}DM, dry matter %

Slurry Dilution vs. N-P-K Value

DM %	N kg/m³ (units/1,000 gals)	P kg/m³ (units/1,000 gals)	K kg/m³ (units/1,000 gals)
2	0.4 (4)	0.21 <i>(2)</i>	1.4 <i>(13)</i>
4	0.7 <i>(6)</i>	0.35 <i>(3)</i>	2.3 <i>(21)</i>
6	1.0 <i>(9)</i>	0.5 <i>(5)</i>	3.5 <i>(32)</i>
7	1.1 <i>(10)</i>	0.6 <i>(6)</i>	4.0 (36)

Example: Cattle Slurry @ 33m ³ /ha - First Cut Grass Silage							
Nutrients	Crop Req.	Nutrients applied					
	(kg/ha)	4% DM Slurry	7% DM Slurry				
Р	20	12 (-40%)	20				
K	125	76 (- <mark>50%)</mark>	120 (-4%)				

Nitrogen (N) in slurry

Organic N

Mineral N

- 50% Organic N
- Not immediately plant available
- Becomes available over time through N mineralization in the soil

- 50% Ammonium N
- Plant Available N in season of application
- Risk of loss depends on:
- Timing of application
- Weather conditions
- Application Method
- N recovery 15 to 40%

Where should I spread slurry?

Where can I best maximise the value of slurry nutrients?

Nutrient Profile

Crop P & K Needs

- Soil Analysis
- Fertiliser Plan
- Crops
 - Grass Silage
 - Slurry Balanced Fertiliser
 - Adjust slurry application rate based on slurry DM

7

Reducing slurry N losses

Best practice for reducing ammonia-N volatilisation loss

Timing of App.

- Application in Spring
- High crop N demand
- Maximise N recovery
- Aim to have 75% slurry applied by end of April

- Apply slurry during
 - Cool, damp, overcast or even misty conditions
- Avoid slurry application
 - Warm, dry, sunny weather

8

AGRICULTURE AND FOOD DEVELOPMENT AUTHORITY

eagasc

Reducing slurry N losses

N value with different slurry application methods

Dribbler Bar / Trailing Shoe Benefits

9

- Less grass contamination / More precise app. of nutrients
- Increased Flexibility -Spread on higher grass covers
- Wider window of application / better soil condition

Fertiliser replacement value?

Maximising the value of slurry N

Planning Slurry Applications

Where ?	When ?	How ?	Rate?
ABC ABC 10 ABC 104 ABC	 Spring better than summer Cool, Damp Conditions 	 Use LESS application method 	N-P-K 9-5-32 €25
 Crop P & K requirements Target fields with highest nutrient need 	cloudy		 Adjust slurry application rates based on DM%
	sunny		

