The Signpost Series 'Pointing the way to a low emissions agriculture'

Carbon Sequestration in Temperate Grasslands

Donal O'Brien

Teagasc,
Crops, Environment & Land Use Centre
Johnstown Castle, Co. Wexford

Outline

EU Green Deal and Climate Action

Carbon Sequestration

Land use & management

Climate Neutral Livestock Farming

Europe's Green Deal

- A roadmap for sustainable growth
 - Circular Economy:
 - "Give back more than it takes away"
 - President of the EU Commission
 - Restore habitats and biodiversity
 - Climate neutral continent
 - » Net zero greenhouse gas (GHG) emissions by 2050

©Fotolia, petovarga

Agriculture and The Green Deal

- "Farm to fork" strategy
 - Fair return for producers
 - Affordable food
 - 25% of total farmland organic

- Carbon farming initiative
 - Curbing climate change
 - Payments for increasing C sequestration and GHG reduction
 - » CAP and/or carbon markets

Ireland's Climate Action Plan

Consistent with EU climate neutrality vision

- Aims to meet Irish GHG targets for EU effort sharing regulation – 2020 to 2030
 - Requires concerted action from all sectors
 - Does not compromise food production ambitions

 Carbon sequestration allowed reduce ~6% (2.7 Mt CO₂/yr) of Irish emissions

ESR* targets & GHG projections

*ESR = EU Effort sharing regulation

*AEA_NF = Annual emission allowance no flexibilities

ESR* targets & GHG projections

*ESR = EU Effort sharing regulation

7*AEA_WF = Annual emission allowance with flexibilities

Teagasc – GHG mitigation strategy

 Reduce agricultural greenhouse gas emissions

2. Displace fossil fuel and improve energy efficiency

3. Enhance carbon sequestration

The Carbon Cycle

AGRICULTURE AND FOOD DEVELOPMENT AUTHORITY

What is Carbon Sequestration?

 Carbon sequestration is a biological process part of the carbon cycle

of the process are:

- Gross C Sequestration ≈ Photosynthesis less Respiration
 - 3. Organic carbon (C) is respired 5. to soil or wood for storage

Factors that regulate C sequestration

Climate

Type of soil

Land use

Land management

Quantifying C Sequestration is Complicated!

Measurement

Modelling

Mapping

Measuring Soil Organic C (SOC)

- Most organic C is in top soil (30cm)
 - Labile easy to breakdown
- C content of subsoil is low & stable
 - Less turnover & exposure to atmosphere
- Deeper soil sampling required for C
 - 50cm to 1 metre
- C Sequestration verified by long-term sampling

Measuring C Fluxes

 Flux tower quantify net C exchange in agro-ecosystems: Daily & Annually

- Measure continuously (every sec)
 - Wind speed and CO₂ mixing ratio

Measuring C Fluxes

 Flux tower quantify net C exchange in agro-ecosystems: Daily & Annually

- Measure continuously (every sec)
 - Wind speed and CO₂ mixing ratio
- Sensitive to effect of weather and management on C
 - Indirectly estimates herbage growth

Net CO₂ exchange in agro-ecosystem

Net C Exchange & Net C Storage

- Positive net exchange =
 CO₂ uptake
- Net C storage includes:
 - C inputs
 - » Organic fertilizer
 - C removals
 - » Cutting and grazing
 - C losses
 - » Erosion, wildfire etc..

AGRICULTURE AND FOOD DEVELOPMENT AUTHORITY

Modelling C Sequestration

 Soil C levels modelled for unmeasured sites

- Models developed from climate, soil C and flux records
- Ecosse, DayCent, PaSIM & RothC valid soil C models
 - Relatively accurate
 - Struggle to predict grass growth

Days after harvest of previous crop (2003)

Model applications

- Monitor C storage at small & large scale
 - From sites to farms, regions, nation
- Simulate C sequestration by good farming practices
 - Correct soil pH, P and K (0.8 t CO₂/ha per year)
 - Spread slurry on tillage land (1.1 t CO₂/ha per year)
- Project impact of climate change on soil C

Balancing Irish agricultural GHG's

 Bovine herd - Principal driver of agricultural GHG emissions

- Irish cattle producers amongst the most GHG efficient in the world
 - EU Commission
- Further gains in efficiency challenging
 - Enhance C sequestration to balance GHG's
 - » Climate neutral

Balancing Irish agricultural GHG's

- Annual GHG's from cattle farms simulated with life cycle assessment
 - On-farm sources
 - » Cattle, manure, fertilizer, fuel, soils…
 - Off-farm sources
 - » Electricity, concentrate, fertilizer, fuel....

*Average producer in 2017

Suckler beef farms – GHG balance

Suckler beef farms – GHG balance

AGRICULTURE AND FOOD DEVELOPMENT AUTHORITY

Suckler beef farms – GHG balance

Low GHG Irish Beef Farm

Climate Neutral Irish Beef Farm

Climate Neutral Irish Dairy Farm

Summary

- C sequestration supports the delivery of climate neutral livestock farming
 - Reduces GHG's in grass-based livestock farms

- Quantity of GHG's reduced by C sequestration in grassland variable & uncertain (-1.9 to 5.5 t CO₂/ha)
 - Aim to monitor larger number of grassland sites

 The distance to climate neutrality target is lower on extensive grass-based livestock farms

Summary

- Achieving climate neutrality is difficult on high output efficient grass-based livestock farm
- Demo events key to transferring C efficient farming practices

 Afforestation & low emission technologies likely to be needed to achieve long-term GHG targets

Helpful Links

- Climate Action Plan 2019: https://www.dccae.gov.ie/en-ie/climate-action/publications/Pages/Climate-Action-Plan.aspx
- Teagasc Daily Online: <u>https://www.teagasc.ie/publications/2020/enhancing-soil-carbon-sequestration-to-contribute-to-carbon-neutrality-on-irish-farms.php</u>
- NEFERTITI: https://nefertiti-h2020.eu/
- CIRCASA: https://www.circasa-project.eu/
- Redmond, 2019. Grassland and carbon sequestration. Teagasc Moorepark 19' booklet: https://www.teagasc.ie/media/website/publications/2019/Grassland-and-carbon-sequestration.pdf

Thank you for listening

Questions?

Acknowledgements

